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Abstract—More and more applications are benefiting from the
ever-increasing performance of wireless communication. Certain
use cases in the mobility area (e.g. autonomous driving) demand
particularly high reliability, which can be achieved through
redundant transmission. In practice, however, it can be difficult
to measure and study the precise benefit of redundancy for
reliability and therefore, appropriate publicly available data sets
are desirable. We provide such a data set about multi-provider
redundancy in cellular networks: the performance metrics of
redundant transmission channels are measured from a driving
car, thus taking mobility into account. A statistical evaluation
quantifies the effect of correlation on reliability empirically.
In the future, this data set can be used for more detailed
and elaborate investigations of the influence of redundancy on
reliability. The knowledge thus obtained, about the interaction
between redundancy and reliability helps to make new safety- and
time-critical applications amenable to wireless communication.

Index Terms—Cellular Networks, Mobility, Redundancy, Reli-
ability

I. INTRODUCTION

There are many future use cases for wireless and cellu-
lar communication that require high reliability. In particular,
automotive and industrial applications frequently demand re-
liability that exceeds the performance of currently available
wireless networks. Specifically, such use cases often require a
reliability of 99.999%, which is equivalent to an unavailability
of ≈ 5 minutes per year. Here, by reliability we mean the
probability of a successfully completed packet transmission,
where we consider a packet transmission as successful if the
packet arrives at its destination within a specified time limit
(e.g. 100ms). Probably the simplest way to increase reliability
in wireless networks is to use an additional, redundant channel
over which the same information is transmitted. This means
that a packet is duplicated, the duplicates are sent via different
channels and, provided both packets arrive, one packet is
discarded at the destination. The reliability r of the resulting
transmission scheme then depends on the reliabilities r1 and
r2 of the two underlying channels as well as on the correlation
c between them. If the channels are uncorrelated, the resulting
reliability r is given by ruc = r1 + r2 − r1r2. For correlated
channels, however, r = ruc − c

√
r1r2(1− r1)(1− r2) (see

Section IV for a derivation of these formulas). Hence, for
a positive correlation coefficient, the resulting reliability is
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Fig. 1. The effect of correlation on resulting reliability can easily be
underestimated. In this case, a correlation coefficient of 0.1 reduces the
resulting reliability by an order of magnitude. (Reused figure [4])

strictly smaller than for independent channels. In particular,
when reliability is considered as ”number of nines”, this shows
that a small correlation can have a large effect on reliability
(see Figure 1). Therefore, it is important to take into account
when packet losses in different channels are correlated.

The approach just outlined can be used in theoretical
models to determine the reliability of a redundant transmission
protocol. However, in practice, the correlation between the
channels is unknown and usually not constant. The latter is
particularly the case for automotive scenarios. Therefore, it is
not clear how to practically quantify the gain in reliability by
redundancy. To obtain methods to answer this question, one
needs real data sets on redundant transmissions. Such a data set
that we collected in an automotive scenario is described in this
paper. Additionally, we provide first findings obtained from it.
The data set contains key performance metrics (such as data
rate and latency) of two different cellular network providers in
Austria, which are measured from a car driving on a highway.
To make the analyses reproducible we publish our full data set
and the tool chains to produce our results. However, we do not
publish the full raw data, because this includes personal and
sensitive data.

II. RELATED WORK

An overview on publicly available wireless communication
data sets is provided by [3]. These data sets are grouped into
completed one-time experiments (typically performed to build



TABLE I
THIS OVERVIEW OF SELECTED COLUMNS FROM THE DATA SET PROVIDES A (SHORT) DESCRIPTION TOGETHER WITH THE MINIMUM, MEDIAN, AND

MAXIMUM VALUE AND THE STANDARD DEVIATION.

description min median max std

time time reindexed to whole seconds 2021-06-02 05:14:20 2022-03-31 05:14:24 2022-12-23 15:59:34
lat latitude from GPS 47.8 47.9 47.9 0.004 19
long longitude from GPS 13.1 13.2 13.3 0.0733
alt altitude from GPS −471 584 955 60.1
signal signal strength in ”bars” 0 4 5 1.28
rssi received signal strength indicator −113 −63 −53 7.07
sinr signal-to-interference-and-noise-ratio −42 13 42 9.72
rsrp reference signal received power −141 −83 −49 11.9
rsrq reference signals received quality −20 −10 −3 2.9
datarateDown data rate in bit/s 0 3.52× 107 2.51× 108 2.97× 107

ping round trip latency in ms 0 36.4 9.76× 103 38.4

Fig. 2. The measurements were done on a highway that mostly stretches in east-west direction.

physical layer models) and ongoing data collection efforts.
The latter are often conducted by federal agencies and mostly
collect higher layer application data. A parallel redundancy
protocol for railway wireless data communication is proposed
by Wang et al. [13]. In this protocol, multiple copies of the
same packet are transmitted over different paths. A field test
shows that this reduces the packet loss rate by 40% at the
maximum. The focus of this work is on building a system
that uses redundancy. In contrast, we measure the benefits such
a system would have. Furthermore, no data set is published
in this paper. Two other works [1, 6] on similar topics also
do not publish data sets. The former, in particular, reports on
improvements in reliability obtained by using multiple mobile
networks. The authors find that in most cases, the devices
can achieve 99.999% connection availability by combining
two operators. In addition, no mobility aspects are considered
in [1, 6]. Palaios et al. [9] present realistic measurements
from vehicles to support robust quality of service (QoS)
prediction. They drive cars on highways and measure mobile
networks from them. Multiple cars together with dedicated
high-precision measurement devices are used and the cell
load is known. In contrast to our work, redundancy is not
considered. A redundant data transmission system with linear
topology is studied by Kozyrev et al. [5]. They calculate
the reliability characteristics of the system and investigate
the effect of cross-redundancy on the system-level reliabil-
ity. However, they only consider an analytic approach. Yen
et al. [14] propose and study the trade-off of transmitting
redundant packets with the low latency configuration in IEEE
802.15.4e to cope with packet loss effects. Shi et al. [12]
propose to use scalar redundancy strategies in wireless mesh
networks, which increases the fault tolerance capacity and can
offer a reliable QoS guarantee. There are some similar publicly
available data sets [11, 10, 8, 7], but they do not consider

redundancy as their target quantity.

III. DATA SET

In this section, we describe our publicly available data set1.
As argued in the introduction, it should help to practically
analyze the effects of redundancy on reliability. Two mea-
suring devices (each based on a custom-modified Raspberry
Pi) are connected to the networks of two different major
mobile network providers in Austria. The devices measure
either the latency or the data rate on alternating days (where
only the type of measurement changes on alternating days,
the devices stay the same). For the data rate measurements,
the devices constantly exchange data at full load over five
TCP flows. More precisely, the measured data rate is the
number of bytes transferred in a second by five repeated HTTP
downloads from four different servers with sizes of 100MB
and 1000MB. The measured latency is the round-trip-time
as measured by ping to a server in our lab. Additionally,
we save the location as determined by GPS, timestamp, and
mobile network parameters (such as signal strength). Both
measurement devices are installed in the car that drives along a
section of the Austrian A1 highway. The data from the devices
is collected using the MINER infrastructure [2]. MINER is
a programmable measurement infrastructure that integrates
existing measurement tools and provides its users higher-level
services to define measurement activities, schedule executions
and retrieve their results.

In a subsequent preprocessing, the data are cleaned, for
example by dropping measurements outside the selected area
(see Figure 2). Table I provides an overview of the most impor-
tant columns of the data. The data set contains measurements
on 229 days consisting of 811 trips and 554 004 measurements
between 2021-06-02 and 2022-12-23. Most of the trips were

1https://github.com/mherlich/redundant-wireless-data-set
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daily commutes to and from work (that is, they contain
mostly trips during morning and afternoon). The contracts
used during the measurements are limited to 150Mbit s−1.
We have not immediately removed extreme or implausible
values (for example, alt −471m and ping 0ms). However,
such outliers could be discarded in subsequent evaluations. In
particular, we preprocess the data set after creating it and we
perform consistency checks before our evaluations.

One of our key concerns while creating the data set was
to measure and control the quality of the data set. For this,
we implemented certain consistency checks. These checks are
implemented in pytest (https://pytest.org) and are tested daily.
Thus, we get a notification if there are any problems with
new data and can fix problems in the data collection as soon
as possible. It turns out that in the beginning of our daily
data checking, there occur many failures in the checks. This
happens, because we choose most of the boundaries in the
checks close to the actual limits that showed up in our data
set. Since we build the checks on a limited amount of data,
there can appear a variance in the boundary of the parameters
if new data is added. These deviations in the checks decrease
over time since we adapt the limits and get closer to the real
boundaries of the measured values.

IV. EFFECT OF REDUNDANCY ON RELIABILITY

A possible use of redundancy is to increase the reliability of
wireless communication, for which we consider two metrics:
Packet loss (based on a latency bound) and outage probability
(based on a data rate bound). For both metrics we compare
how well redundancy is able to increase the performance of
the wireless system both for a naive calculation (assuming
independence) and the measured value (which includes depen-
dencies). In theory, the correlation between the two channels
affects the reliability of the overall transmission as follows:
Let X1 and X2 denote the results of the two transmissions,
where these random variables are equal to 1 if the transmission
failed and 0 otherwise. The expectation value E[Xi] is then
given by 1− ri, where ri is the reliability of the i-th channel.
Since the random variable X1X2 takes the value 1 if and only
if the transmission over both channels fails, the expectation
value E[X1X2] is equal to 1 − r with r being the reliability
of the redundant transmission scheme. The definition of the
(Pearson) correlation coefficient

c =
E[X1X2]− E(X1)E(X2)√

E[X2
1 ]− (E[X1])2

√
E[X2

2 ]− (E[X2])2
(1)

thus results in the equation

c =
(1− r)− (1− r1)(1− r2)√

(1− r1)− (1− r1)2
√
(1− r2)− (1− r2)2

. (2)

Here, we have used that X2
i = Xi since Xi only takes the

values 0 and 1. Rearranging and simplifying then yields

r = r1 + r2 − r1r2 − c
√
r1r2(1− r1)(1− r2). (3)

This equation shows how the correlation affects the reliability
of the overall transmission. In particular, we see that the

TABLE II
THE PROBABILITY THAT A PACKET DOES NOT ARRIVE DURING 100ms IS

REDUCED BY USING REDUNDANT TRANSMISSION. CONFIDENCE
INTERVALS (CI) ARE ESTIMATES BASED ON THE CLOPPER-PEARSON
INTERVAL BASED ON THE BETA DISTRIBUTION OR, IN THE CASE OF

INDEPENDENCE, THE PRODUCT OF THE INDIVIDUAL CI BOUNDS.

System Loss probability Lower CI Upper CI

Only network A 0.008 56 0.008 06 0.009 08
Only network B 0.025 62 0.024 76 0.026 51
Assuming independence 0.000 22 0.000 20 0.000 24
True combined value 0.000 77 0.000 62 0.000 94

TABLE III
THE OUTAGE PROBABILITY (FOR 1Mbit s−1) IS REDUCED BY USING

REDUNDANT TRANSMISSION. CONFIDENCE INTERVALS (CI) ARE
ESTIMATES BASED ON THE CLOPPER-PEARSON INTERVAL BASED ON THE
BETA DISTRIBUTION OR, IN THE CASE OF INDEPENDENCE, THE PRODUCT

OF THE INDIVIDUAL CI BOUNDS.

System Outage probability Lower CI Upper CI

Only network A 0.010 86 0.010 31 0.011 43
Only network B 0.015 99 0.015 32 0.016 68
Assuming independence 0.000 17 0.000 16 0.000 19
True combined value 0.000 71 0.000 57 0.000 86

higher the correlation, the lower the reliability. In the rest
of this section we describe how we empirically evaluate this
theoretical result. Note that we consider this evaluation pre-
liminary, because its analysis is based on a non-representative
convenience data set (see Section V).

A. Packet loss

We define a packet as lost when the communication system
loses a packet or the round-trip time is greater than 100ms.
Table II shows the packet loss probability in our data set when
using (1) only the network of provider A, (2) only the network
of provider B, (3) a theoretical combination of both networks
under the assumption of independence (i.e. the product of
the individual loss probabilities) and (4) the loss probability
that does not assume independence (the true combined value,
i.e. a packet is considered as lost if it does not arrive over
either channel in less than 100ms). The use of redundancy
reduces the loss probability, but not as much as independent
transmissions would. For our evaluation, we used the Clopper-
Pearson confidence interval (also called the exact interval).
This is an alternative for calculating binomial confidence
intervals using normal approximation. The Clopper-Pearson
interval is based on inverting the equal-tailed binomial tests
using the relationship between the binomial distribution and
the beta distribution.

B. Outage probability

We arbitrarily define an outage as a state in which the wire-
less system is not able to transmit 1Mbit over 1 s. Table III
shows the equivalent to Table II for outage probability. As in
the case for reliability based on latency, also based on data
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rate, the use of redundancy reduces the loss probability, but
not as much as independent transmissions would.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a data set on multi-provider
redundancy in cellular networks measured in an automotive
scenario. This data set is publicly available and should help
to practically quantify the gain in reliability obtained by
redundant packet transmissions. First findings from the data
set are included in this paper. For an easier interpretability,
we also deduced the theoretical model underlying redundant
transmissions.

In the future, we plan to systematically expand the data set
towards a uniformly distributed data set. Collecting data to
create a data set depends on different external factors. These
factors influence the data, and thus the data are biased. The
data collected on a highway, such as the data set in this work,
is affected by time and date, as well as the traffic on the
highway and the weather. This means, that for example on
workdays at rush hour there is more traffic on the highway.
This traffic leads to lower speed, which results in more data
points for this measurement. Another consequence of high
traffic can be a lower data rate or a higher packet loss, as many
devices are using the resources of one communication cell.
Besides this influenced data, our data set is incomplete. This
incompleteness results from relying on convenience sampling
for our measurements, because the measurement takes place
only when a driver uses the car. We therefore plan to carry
out additional measurements with specific properties. Such
additional measurements are in this case new measurement
drives that should happen at a certain time and date and, if
possible, at certain weather and traffic conditions. By dint of
these measurements, we hope to reduce the bias of our data
set.

After expanding our data set, we will use it to perform
a more detailed and elaborate analysis of the influence of
redundancy on reliability. For this analysis, we will use both
statistical methods and machine learning methods.
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