Analyzing Travel Time Reliability from Sparse Probe Vehicle Data.
Markus Steinmaßl, Stefan Kranzinger, Karl Rehrl (2021): Analyzing Travel Time Reliability from Sparse Probe Vehicle Data. A Case Study on the Effects of Spatial and Temporal Aggregation. In: Transportation Research Record: Journal of the Transportation Research Board
Travel time reliability (TTR) indices have gained considerable attention for evaluating the quality of traffic infrastructure. Whereas TTR measures have been widely explored using data from stationary sensors with high penetration rates, there is a lack of research on calculating TTR from mobile sensors such as probe vehicle data (PVD) which is characterized by low penetration rates. PVD is a relevant data source for analyzing non-highway routes, as they are often not sufficiently covered by stationary sensors. The paper presents a methodology for analyzing TTR on (sub-)urban and rural routes with sparse PVD as the only data source that could be used by road authorities or traffic planners. Especially in the case of sparse data, spatial and temporal aggregations could have great impact, which are investigated on two levels: first, the width of time of day (TOD) intervals and second, the length of road segments. The spatial and temporal aggregation effects on travel time index (TTI) as prominent TTR measure are analyzed within an exemplary case study including three different routes. TTI patterns are calculated from data of one year grouped by different days-of-week (DOW) groups and the TOD. The case study shows that using well-chosen temporal and spatial aggregations, even with sparse PVD, an in-depth analysis of traffic patterns is possible.